If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+30t-13=0
a = -16; b = 30; c = -13;
Δ = b2-4ac
Δ = 302-4·(-16)·(-13)
Δ = 68
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{68}=\sqrt{4*17}=\sqrt{4}*\sqrt{17}=2\sqrt{17}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-2\sqrt{17}}{2*-16}=\frac{-30-2\sqrt{17}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+2\sqrt{17}}{2*-16}=\frac{-30+2\sqrt{17}}{-32} $
| -4e=9=19 | | 6(2^-2)=y | | -v/3=-22 | | -7x+3x+15-11x=X | | 3/11x=9x/17 | | 9=2x^2-5x+12 | | 3/4(b+4)=2/3(b-4) | | 4(3s+8)=152 | | 2x-23=4x-3 | | 3/4(b+4=2/3(b-4) | | 4x+5=13;3 | | -35=y-65 | | -7y+2=6(y-4) | | x/24=1/8 | | -7y+2=(y-4)6 | | 16t^2+30t-13=0 | | -b+3=-11b-4 | | -7y+2=(y-4) | | 10z-z=-1+6z-1-7 | | 7(x+3)-2x=5(2x+1) | | 3x+2–1x–1=7x2+x–2 | | 18=2(2a+5) | | (u+5)*7=32 | | 2x2+12=0 | | 28-4v=3v | | 5/2x+3=1/2+15 | | (q-7)*2=16 | | 4^x+7^x=65 | | 9/2x-1=3/6 | | 8(3.4x+3.9)+1.8x=7.6 | | 4x–15=11x | | 2(5x+6)=-36+18 |